Wednesday, July 1, 2020

World's largest graveyard of Dinosaurs found in South Africa

This article is by

Share this article

Article Contributor(s)

Nikhita Gautam

Article Title

World's largest graveyard of Dinosaurs found in South Africa

Publisher

Global Views 360

Publication Date

July 1, 2020

URL

‘African dinosaurs’ exhibit at the Iziko South African Museum in Cape Town

‘African dinosaurs’ exhibit at the Iziko South African Museum in Cape Town | Source: Bruce Anderson via Wikimedia

In a village in the eastern cape of South Africa lies one of the most significant dinosaur sites ever found in the world. The site was discovered when a shepherd, Dumangwe Thyobeka found a large bone on his way to his great-grandparents’ graves, in 2015. He then took the bones to a local dinosaur enthusiast, James Rhalene. Commenting on this discovery " Mr. Rhalene said, "Growing up we were told dinosaurs were a myth, I thought they were only tales our grandparents would tell around the fire at story time", and It wasn't until reading some books that I started to believe they may be real. I've been looking into the existence of dinosaurs since 1982. He added, "You can imagine my excitement at being part of this and discovering them in my own backyard. I am so proud. Books will be written about our small village; the world will come to know of us through this discovery.”

These bones are more than 200 million years old, of around the end of the Triassic era and the beginning of the Jurassic one. When the village elder, Sginyane Ralane came to know about the discovery, he reached out to universities in South Africa for looking into it. The news eventually reached Prof. Jonah Choiniere from the University of Witwatersrand in Johannesburg, and in 2018 Jonah and his colleagues started excavating the site. “It has been one of those places where you sometimes find yourself literally tripping over a dinosaur bone. There are very few other sites I've had the chance to work where we have this richness of fossils.” says Prof Paul Barett, a dinosaur expert at The Natural History Museum, UK, after he joined the team.

A reason why this area is abundant in fossils, Natural History Museum explains, is because of the ancient river systems in the area. The area is arid for most of the year now, and the rivers flow only seasonally. However, in the ancient times, there were vast river systems flowing year-round in the region, with wide, shallow rivers which would consequently form a layer of rock 210 million years old which is up to 500 meters thick in some regions. These rivers supported diverse wildlife, including ancestors of crocodiles, possibly those of turtles and mammals and fish, amphibians and reptile-like animals. The existence of such large rivers meant that dead animals nearby would be buried in sediment before they decomposed.  

This discovery is scientifically important for a number of reasons; the era from which these bones are found is a boundary in which a mass extinction occurred. Prof. Jonah is trying to understand how the animals from before that extinction survived and how they flourished after. In the Triassic era, there were multiple dominating animals, like the crocodiles, big mammal-like animals and dinosaurs. In the Jurassic era, however, the dinosaurs are clearly dominating. Why this happened is unclear, and the rocks and fossils from this site might help with that. There were also other animals along with dinosaurs in this site which make it noteworthy. Of the animals found, there were rauisuchians, which relate to modern-day crocodiles, and were dominant on land during the Triassic. The team also found cyclodonts and dicyclodonts, where the cyclodonts are the early ancestors to all mammals, and dicyclodonts are an even earlier branch of the mammalian family tree.

All of these have a significant impact on the community too; the team signed a memorandum of understanding with the local government with huge. After the signing, local officials visited the site at Qhemega. The team has been trying to use the heavy machinery they had brought for moving fossils for improving access in and to the village. They are also developing a curriculum in high schools to include topics about fossil sites and to add geography to the curriculum, to train the younger generation about the mapping used in excavation and in many other scientific fields especially relevant in the mineral-resource rich South Africa.

So far, this site has only provided benefits for everyone involved; new discoveries and confirming data for the scientific community, and economic access, increased opportunities and a matter for pride for the local community.

Support us to bring the world closer

To keep our content accessible we don't charge anything from our readers and rely on donations to continue working. Your support is critical in keeping Global Views 360 independent and helps us to present a well-rounded world view on different international issues for you. Every contribution, however big or small, is valuable for us to keep on delivering in future as well.

Support Us

Share this article

Read More

February 4, 2021 4:53 PM

Physics and Technological Revolutions

As he witnessed the first detonation of a nuclear weapon on July 16, 1945, a piece of ancient Scripture “Bhagwad Geeta” ran through the mind of Robert Oppenheimer: “Now I am become Death, the destroyer of worlds”. Oppenheimer, alongside the likes of Richard Feynman, Enrico Fermi, George Gamow, was part of the star-studded Physicist squad behind the Manhattan Project.

The biggest implications drawn from the end of WW2 for many might have just been the incoming power Struggle between the US and Soviet Union, but for your average American it went to a great length to show that Physicists form a breed of people who can build dangerously effective technology.

That fact, however, would have been evident to anyone with a brisk walk through Human History itself. Physicists have arguably provided the most significant contributions to the Technological Development of our race. From Archimedes building light reflectors to save the Greek Army from Roman Infiltration to the large-scale Ballistic Missile systems made during WW-II, weaponry technology has been highly influenced by physicists in every generation.

But mere list of armaments cannot do justice to the role played by Physics Research in Technological Developments of our society. To get a feel for that, let’s go back to the fathers of Modern Physics as we know it; Sir Isaac Newton and Galileo Galilei. Galileo had his long list of achievements in creating cutting edge technology of the day, ranging from Telescopes to Thermometers & the Magnetic Compass. Sir Isaac for his part was the reason behind the advent of the Industrial Revolution in Great Britain!

The simple Atwood Machines which have today become mainstay material taught to College Freshman and High School Seniors worldwide, were actually the kind of mechanical models on which the large-scale Factory Machines were built. Newton’s laws kickstarted the modern Technological Revolution and ever since then, Physics has been a constant source of inspiration behind all Technology.

The great pioneers in the field “Natural Philosophy” (the physics of today) after Newton continued the trend which their illustrious predecessor had started. The seminal works on Thermodynamics by the likes of Lord Kelvin, Ludwig Boltzmann, James Clerk Maxwell etc. played the decisive part in creating automobile engines and really any technology which dealt with heat (Spoiler Alert- There were a lot of them!). Maxwell’s work on the famous equations on Electromagnetism now named after him played the most significant part in the mission of making Electricity available to everyone (a conquest now just famously remembered for the fight between Nikola Tesla and Thomas Edison).

While one can point out that Theoretical works cannot lead to new Technology on their own, that assertion is only the half-truth. Sure, building technology on the basis of theoretical physics is mostly down to the Engineers, but one cannot underestimate the effect new theoretical developments and their possible uses have on the construction of new technologies. After all, if one was not able to understand the principles of the conversion of mass to energy or Electric & Magnetic Fields are coupled to each other, then expecting the construction of Nuclear Reactors and virtually all Electric Tech today would have been off the table.

So one might ask, what are the new theoretical ideas which can guide the next leap forward technologically? Well, no one can be quite sure of the form which technology will take in even a couple of decades (who would have thought that Server systems designed for efficiently using giant Data in CERN would one day be heavily used for making memes!).

I would go as far as to say that we have not yet completely exhausted the technological possibilities of the Special Theory of Relativity itself, the most prominent example of game changing technology based on that has been GPS Communication systems. One can hence fail to even imagine the kind of technological (and Industrial) progress technologies built on the revealing concepts from General Relativity and Quantum Mechanics can bestow upon us (I’m even refraining to comment on the Quantum Field Theoretic parts!).

Whatever that physics will lead us to is a mystery time will be most suited to answer, but one can see the effects of Quantum Mechanics in the next Computational Revolution itself; Quantum Computing. To put into perspective the extent of development Quantum Computing can bestow upon us, consider the following.

Computational devices today, which are stronger than the computers which put humans to the moon, are fundamentally built upon binary bit systems. From generating Big Bang like Energies in CERN and reaching past Saturn, to making all the knowledge available to everyone has been done in two bits. While Quantum Computers, which are being vividly researched on, can work with virtually infinite bits ! So, hold on tight as exciting new physics promises some large-scale changes on our Civilization as a whole.

Read More