Wednesday, July 1, 2020

World's largest graveyard of Dinosaurs found in South Africa

This article is by

Share this article

Article Contributor(s)

Nikhita Gautam

Article Title

World's largest graveyard of Dinosaurs found in South Africa

Publisher

Global Views 360

Publication Date

July 1, 2020

URL

‘African dinosaurs’ exhibit at the Iziko South African Museum in Cape Town

‘African dinosaurs’ exhibit at the Iziko South African Museum in Cape Town | Source: Bruce Anderson via Wikimedia

In a village in the eastern cape of South Africa lies one of the most significant dinosaur sites ever found in the world. The site was discovered when a shepherd, Dumangwe Thyobeka found a large bone on his way to his great-grandparents’ graves, in 2015. He then took the bones to a local dinosaur enthusiast, James Rhalene. Commenting on this discovery " Mr. Rhalene said, "Growing up we were told dinosaurs were a myth, I thought they were only tales our grandparents would tell around the fire at story time", and It wasn't until reading some books that I started to believe they may be real. I've been looking into the existence of dinosaurs since 1982. He added, "You can imagine my excitement at being part of this and discovering them in my own backyard. I am so proud. Books will be written about our small village; the world will come to know of us through this discovery.”

These bones are more than 200 million years old, of around the end of the Triassic era and the beginning of the Jurassic one. When the village elder, Sginyane Ralane came to know about the discovery, he reached out to universities in South Africa for looking into it. The news eventually reached Prof. Jonah Choiniere from the University of Witwatersrand in Johannesburg, and in 2018 Jonah and his colleagues started excavating the site. “It has been one of those places where you sometimes find yourself literally tripping over a dinosaur bone. There are very few other sites I've had the chance to work where we have this richness of fossils.” says Prof Paul Barett, a dinosaur expert at The Natural History Museum, UK, after he joined the team.

A reason why this area is abundant in fossils, Natural History Museum explains, is because of the ancient river systems in the area. The area is arid for most of the year now, and the rivers flow only seasonally. However, in the ancient times, there were vast river systems flowing year-round in the region, with wide, shallow rivers which would consequently form a layer of rock 210 million years old which is up to 500 meters thick in some regions. These rivers supported diverse wildlife, including ancestors of crocodiles, possibly those of turtles and mammals and fish, amphibians and reptile-like animals. The existence of such large rivers meant that dead animals nearby would be buried in sediment before they decomposed.  

This discovery is scientifically important for a number of reasons; the era from which these bones are found is a boundary in which a mass extinction occurred. Prof. Jonah is trying to understand how the animals from before that extinction survived and how they flourished after. In the Triassic era, there were multiple dominating animals, like the crocodiles, big mammal-like animals and dinosaurs. In the Jurassic era, however, the dinosaurs are clearly dominating. Why this happened is unclear, and the rocks and fossils from this site might help with that. There were also other animals along with dinosaurs in this site which make it noteworthy. Of the animals found, there were rauisuchians, which relate to modern-day crocodiles, and were dominant on land during the Triassic. The team also found cyclodonts and dicyclodonts, where the cyclodonts are the early ancestors to all mammals, and dicyclodonts are an even earlier branch of the mammalian family tree.

All of these have a significant impact on the community too; the team signed a memorandum of understanding with the local government with huge. After the signing, local officials visited the site at Qhemega. The team has been trying to use the heavy machinery they had brought for moving fossils for improving access in and to the village. They are also developing a curriculum in high schools to include topics about fossil sites and to add geography to the curriculum, to train the younger generation about the mapping used in excavation and in many other scientific fields especially relevant in the mineral-resource rich South Africa.

So far, this site has only provided benefits for everyone involved; new discoveries and confirming data for the scientific community, and economic access, increased opportunities and a matter for pride for the local community.

Support us to bring the world closer

To keep our content accessible we don't charge anything from our readers and rely on donations to continue working. Your support is critical in keeping Global Views 360 independent and helps us to present a well-rounded world view on different international issues for you. Every contribution, however big or small, is valuable for us to keep on delivering in future as well.

Support Us

Share this article

Read More

July 19, 2021 11:59 AM

Detecting The Ultra-High Energy Cosmic Rays With Smartphones

Smartphones have become the most commonplace objects in our daily lives. The unimaginable power that we hold in our hands is unrealized by most of us and, more importantly, untapped. Its creativity often gets misused but one can only hope that it’s fascinating abilities would be utilized. For example, did you know that the millions of phones around the globe can be connected to form a particle detector? The following article covers the CRAYFIS (Cosmic RAYs Found in Smartphones) phone-based application developed by the physicists from the University of California—Daniel Whiteson, Michael Mulhearn, and their team. CRAYFIS aims to take advantage of the large network of smartphones around the world and detect the cosmic or gamma rays bursts which enter the Earth’s atmosphere almost constantly.

What Are Cosmic Rays?

Cosmic rays are high velocity subatomic particles bombarding the Earth’s upper atmosphere continuously. Cosmic ray bursts have the highest energy compared to all forms of electro-magnetic radiation. When we say ultra-high energy particles (energy more than 10<sup>18</sup> eV), we mean two million times more energetic than the ones that can be produced by the particle colliders on Earth.  These rays are thought to be more powerful than typical supernovae and can release trillions of times more energy than the Sun. They are also highly unpredictable as they can enter Earth’s atmosphere from any direction and the bursts can last for any period of time ranging from a few thousand seconds to several minutes.

Despite many theoretical hypotheses, the sources of these ultra-high energy cosmic rays are still a mystery to us even after many decades of their discovery. These rays were initially discovered in the 1960’s by the U.S. military when they were doing background checks for gamma rays after nuclear weapon testing. Cosmologists suggest that these bursts could be the result of super massive stars collapsing - leading to hypernova; or can be retraced to collisions of black holes with other black holes or neutron stars.

How Do We Detect Them?

When the high-energy particles collide with the Earth’s atmosphere, the air and the gas molecules cause them to break apart and create massive showers of relatively low-energy particles. Aurora borealis i.e., the Northern and the Southern lights are the lights that are emitted when these cosmic rays interact with the Earth’s magnetic field. Currently, these particles are hitting the Earth at a rate of about one per square meter per second. The showers get scattered to a radius of one or two kilometers consisting mostly of high-energy photons, electrons, positrons and muons. But the fact that these particles can hit the Earth anytime and anywhere is where the problem arises. Since the Earth has a massive area, it is not possible to place a detector everywhere and catch them at the exact moment.

Energetic charged particles known as cosmic rays hit our atmosphere, where they collide with air molecules to produce a shower of secondary particle | Source: CERN

Detecting such a shower requires a very big telescope, which logically means a network of individual particle detectors distributed over a mile or two-wide radius and connected to each other. The Pierre Auger Observatory in South America is the only such arrangement where 1,600 particle detectors have been scattered on 3,000 square kilometers of land. But the construction cost of the same was about $100 million. Yet, only a few cosmic ray particles could be detected using this arrangement. How do we spread this network around the Earth?

In addition to being cost-effective, such a setup must also be feasible. The Earth’s surface cannot possibly be dotted with particle detectors which cost huge fortunes. This is where smartphones come into the picture.

Detecting The Particles Using Smartphones

Smartphones are the most appropriate devices required to solve the problem. They have planet wide coverage, are affordable by most people and are being actively used by more than 1.5 billion users around the planet. Individually, these devices are low and inefficient; but a considerably dense network of such devices can give us a chance to detect cosmic ray showers belonging to the highest energy range.

Previous research has shown that smartphones have the capability of detecting ionizing radiation. The camera is the most sensitive part of the smartphone and is just the device required to meet our expectations. A CMOS (Complementary Metal Oxide Semiconductor) device is present in the camera- in which silicon photodiode pixels produce electron-hole pairs when struck by visible photons (when photons are detected by the CMOS device, it leaves traces of weakly activated pixels). The incoming rays are also laced with other noises and interference from the surroundings.  Although these devices are made to detect visible light, they still have the capability of detecting higher-energy photons and also low-ionizing particles such as the muons.

A screenshot from the app which shows the exposure time, the events- the number of particles recorded and other properties

To avoid normal light, the CRAYFIS application is to be run during nighttime with the camera facing down. As the phone processor runs the application it collects data from its surroundings using a camera as its detector element. The megapixel images (i.e., the incoming particles) are scanned at a speed of 5 to 15 frames per second, depending on the frame-processing speed of the device. Scientists expect that signals from the cosmic rays would occur rarely, i.e., around one in 500 frames. Also, there is the job of removing background data. An algorithm was created to tune the incoming particle shower by setting a threshold frequency at around 0.1 frames per second. Frames containing pixels above the threshold are stored and passed to the second stage which examines the stored frames, saving only the pixels above a second, lower threshold.

The CRAYFIS app is designed to run when the phone is not being used and when it is connected to a power source. The actual performance would be widely affected by the geometry of the smartphone’s camera and the conditions in which the data is being collected. Further, once the application is installed and is in the operating mode, no participation is required from the user, which is required to achieve wide-scale participation. When a Wifi connection is available the collected data would be uploaded to the central server so that it could be interpreted.

There is much complicated math used to trace back the information collected from the application. The most important parameters for the app are the local density of incoming particles, the detection area of the phone and the particle identification efficiency. These parameters are used to find the mean number of candidates (photons or muons) being detected. Further, the probability that a phone will detect no candidates or the probability that a phone will detect one or more candidates is given by Poisson distribution. The density of the shower is directly proportional to the incident particle energy with a distribution in x and y sensitive to the direction in which the particle came from. An Unbinned Likelihood (it is the probability of obtaining a certain data- in this case the distribution of the cosmic rays including their energy and direction, the obtained data is arranged into bins which are very, very small) analysis is used to determine the incident particle energy and direction. To eliminate background interference, a benchmark requirement has been set that at least 5 phones must detect and register a hit to be considered as a candidate.

It is impossible to express just how mind-blowing this innovation is. As the days pass, Science and Technology around us keep on surprising us and challenge us to rack our brains for more and more unique ways to deal with complex problems. The CRAYFIS app is simply beautiful and it would be a dream-come-true to the scientists if the project works out and we are able to detect these high energy, super intimidating cosmic rays with smartphones from our backyard.

Further Reading

The paper by Daniel Whiteson and team can be found here.

An exciting book “We Have No Idea” by Daniel Whiteson and cartoonist Jorge Cham can be found here.

The CRAYFIS app can be found here.

Read More