US Sanctions versus Iran’s fight against COVID-19 pandemic
Publisher
Global Views 360
Publication Date
June 22, 2020
URL
Coronavirus patients at Imam Khomeini Hospital, Tehran | Source: Mohsen Atayi via Wikimedia
Iran is the hardest-hit country by the coronavirus pandemic in the middle east. The contagion was first detected on 19 February 2020 in the holy city of Qom, and thereafter spread quickly across the country. As of 18th June 2020, it had over 9000 coronavirus related fatalities. The virus attacked all the 31 provinces of the country not discriminating between the common man and the people at high places including the members of the Parliament, religious leaders and senior ministers. The crisis touched most parts of the country, but it most severely impacted working and the poor class.
The Iranian government has been criticized for its response towards the pandemic. The health care policy, which has been politicized, has preferred denial and misinformation as a response to the crisis the pandemic brought with it. Questions have also been raised about the role of US sanctions in crippling Iran’s economy, public health facilities and public health facilities. All these factors, when combined, have disabled Tehran (the capital of Iran) from providing the best response to the pandemic.
What do the sanction laws say?
According to the Office of Foreign Assets Control, the US has “consistently maintained broad exceptions and authorizations to support humanitarian transactions with Iran.” The first significant sanctions were imposed in 1995 by Bill Clinton, and in 2001 exemptions for medical goods and medicine first came into effect. These sanctions have periodically widened the scope of products for exemption, and by 2012, the exclusions included agricultural products and most foods. After the world powers, including the US, reached a deal with Iran on its nuclear programme in 2015, the sanctions were lowered against Iran. This approach was abandoned after Trump withdrew the US from the deal and sought to force Iran’s leaders to change their anti-US policy. .
The US sanctions are enforced through a wide array of instruments. Financial sanctions prohibit US banks from transacting with Iran, which limits Iran’s access to dollar-denominated transactions. Secondary sanctions measures also target non-US entities that have dealings with Iran, thus at a risk of facing prosecution in the US. These sanctions make transactions with Iran lengthy and complicated, and even impossible in some cases
There are some exemptions from sanctions for humanitarian assistance (sale of agricultural commodities, food, medicine and agricultural services). Despite these exemptions, sanctions have severely impaired Iran’s ability to be able to finance humanitarian imports. Given the volume of complexity and due diligence involved, most banks are reluctant to deal with Iran. This makes it difficult to find a way to pay for purchases difficult for Iran. Also many items require additional authorization because the US considers them as “dual-use” (the things might also be used for defence- for example, the sort of oxygen generators that are needed in life support machines used to treat coronavirus cases). Lastly, the sanctions on Iran’s oil exports led to a decline in revenue, further weakening Iran’s currency, which has left the country vulnerable and with fewer resources to pay for non-sanctioned items as well.
All these put together have directly caused shortages of medical equipment and impacted Iran’s health sector negatively. This has also impacted the capability of Iranian healthcare sector to effectively manage the COVID-19 situation.
Support us to bring the world closer
To keep our content accessible we don't charge anything from our readers and rely on donations to continue working. Your support is critical in keeping Global Views 360 independent and helps us to present a well-rounded world view on different international issues for you. Every contribution, however big or small, is valuable for us to keep on delivering in future as well.
3D Printing: The direction to go for the Indian Defense and Aerospace Industries
3D printing is the next big game-changer on the technological front, almost a revolution if you will. 3D printing, also known as additive manufacturing, is a process of creating three-dimensional objects by layering two-dimensional cross sections on top of one another. The two-dimensional cross sections are computer-designed and rendered, which makes it all the more advanced. From Aerospace to Defense and Medical to Automotive, products manufactured via 3D printing are spreading their reach in the markets quite swiftly. This article will take a look at how 3D printing is beneficial and how the technology can transform the Indian and Defense and Aerospace sectors once utilized to its full potential.
Additive manufacturing has the power to unlock a wide range of opportunities. It uses a 3D printer to create a layer-by-layer “addition” of material which is digitally constructed. Different types of materials which are currently being used for the same are metals, ceramics, special plastics, synthetic resins, and etc. 3D printing not only reduces the cost of production of various components but also gives the power to manufacture locally with design flexibility. The technology significantly speeds the process of designing; this is mainly because there is no requirement of tools. Traditional manufacturing usually takes months to either acquire necessary tools and further produce parts and components or import components from various places. However, once 3D printers are acquired, which they might be costly in themselves, they would ensure a smoother production process. Hence, due to the combination of localized manufacturing and no tools, tailor-made designs can be produced to match the necessities of various industries.
India is gradually growing with respect to its utilization of 3D printing technology. In 2014, the 3D printers market was at an early stage with just 200-500 combined workforce of engineers, designers and sales representatives. Currently, start-ups are springing up in places like Bangalore, Chennai, Mumbai, Visakhapatnam, etc and they are producing essential parts for sectors like the Indian Navy, Air Force, ISRO and the HAL. India’s 3D printing market is projected to reach $79 million by the end of 2021, while the global market is at around $15.8 billion, which suggests that India has a lot of catching up to do.
Applications in the Aerospace and Defense Industry
The Aerospace and Defense Industries are keen to pursue additive manufacturing, mainly because of benefits such as weight reduction, cost cutting and to meet their highly specific requirements. The additive process uses less material to manufacture components and also ensures minimal waste of material. Overall reduced weightage means that less fuel would be used in aircrafts and hence result in better environmental compatibility. Let’s examine a few instances in India where 3D printing startups have assisted and provided the defense and aerospace sectors with unique solutions.
Recently, in 2020, the Centre-run defense company Hindustan Aeronautics Limited (HAL) had signed a MoU (Memorandum of Understanding) with Wipro 3D, the metal additive manufacturing branch of Wipro Infrastructure Engineering. The initiative would primarily focus on the design, development, testing, manufacturing, and repairing of aerospace components using metal additive technology. HAL is using 3D printing to manufacture engine components, although it also provides support to helicopter and rotary wing products. HAL also provides products to the Indian Army, Air Force, Navy, and Coast Guard. Speaking about this collaboration, Shekhar Shrivastava, CEO of the Bangalore division of HAL, said, “This initiative between HAL and Wipro 3D will create a unique synergy of capabilities that can accelerate the adoption of metal additive manufacturing in aerospace in India. Qualification of parts for aerospace is challenging as it would require prove out and extensive testing followed by certification by regulatory authorities which may also include flight testing."
Down south, Karnataka, which produces more than 65 percent of India’s aerospace-related components and exports, has taken a number of initiatives to promote additive manufacturing by setting up 3D printing clusters and sponsoring 3D printing startups. For example, through its flagship programme ‘Start Up Karnataka’, the State has given grants to ‘Deltasys E-Forming’, a Belgaum based start-up, to develop hybrid composite 3D printers. These initiatives are quite appropriate since two-thirds of India’s aircraft and helicopter manufacturing for the defense takes place in Karnataka, and 3D printing would revolutionize these processes quite rapidly.
On the other coast, Chennai-based 3D printing startup, Fabheads Automation, was established in 2015 by an ISRO engineer turned entrepreneur Dhinesh Kanagaraj. The deep tech startup designs and develops high-end carbon fibre helicopter blades for the Indian Air Force. Traditionally, carbon fibre parts are fabricated by laborious manual processes with a lot of fabrication time and money spent. Dhinesh also observed a lot of material wastage when he worked on carbon fibres at ISRO. Based on this, Fabheads has designed an automated 3D printer series to eliminate material waste and also improve efficiency of production of carbon fibre. Sectors like the DRDO are currently approaching the company given these innovative methods of production.
3D Printing Saves the Day for the Indian Navy
Further, the Indian Navy has partnered with ‘think3D’, a Hyderabad-based 3D printing start-up, to produce spare components via additive manufacturing for both on and off-shore set-ups. The Indian Navy uses a lot of machinery on its ships which are imported from other countries and are quite old. Whenever a component gets damaged, it is hard to replace it either because there is no availability of the part or because there is significant delay before a part is received. This often proved to be costly for the Navy since the machines would have to be kept idle before a spare part was replaced along with the fact that procurement of the parts was no less expensive.
This is where think3D had stepped in and supplied 3D printed parts to the Indian Navy, which were successfully tested and incorporated into its machinery. An example of such a 3D printed part, which proved to be of crucial help, is that of a centrifugal pump impeller- a key component for a ship’s operation.
The impeller is a rotating component and it is very important for a ship as it transfers energy from the motor to a fluid that needs to be pumped by accelerating the fluid outwards from the centre of rotation. On ships, this component is used to import seawater into various parts of the ship for regular use of the crew. These impellers are required to rotate at high speeds for long durations and need to be very carefully designed. 3D printing was the best solution to replace these parts, given the speed of production and lower expenses.
Given all the benefits of 3D printing, it is high time for the Indian market to expand its 3D printing industry and utilize it to its full potential. There are many other instances like the one of the impeller in the Aerospace and Defense industries which can easily be solved using 3D printing.