Wednesday, July 29, 2020

Turkey: A new player in Killer Drone Arena

This article is by

Share this article

Article Contributor(s)

Nikhita Gautam

Article Title

Turkey: A new player in Killer Drone Arena

Publisher

Global Views 360

Publication Date

July 29, 2020

URL

Bayraktar TB2—Turkey’s first indigenous produced armed drone

Bayraktar TB2—Turkey’s first indigenous produced armed drone | Source: Bayhaluk via Wikimedia

It is almost two decades since the military drone (Unmanned Aerial Vehicle --UAV) was used by any country (The USA) for aerial attack in a combat mission. It has led to a rush among the countries to acquire military drones through indigenous development programs or import from other countries.

Turkey tried to import the military drones from the USA and Israel but the product which it got was not up to the mark. After experiencing the difficulties in importing effective military drones, Turkey, through its robust private sector defence industry, started serious work to develop indigenous capability around 2010.  This focus paid off and in less than a decade Turkey became a major player in the production and export of military drones.

Bayraktar TB2 is Turkey’s first indigenously produced armed drone. It is developed by a private company “Baykar Makina.” This drone can fly at an altitude of 24,000 feet for up to 24 hours and relies on ground control stations for communication. With a range of up to 150 kilometres, it can carry a payload of 120 pounds and has become the backbone of its unmanned air force

The other heavier and satellite-linked military drone is ANKA-S which made its operational debut in 2019 during the battle over Idlib in Syria. It is manufactured by Turkish Aerospace Industries which is the giant of defence production in Turkey. It can fly for more than 24 hours carrying a 400-pound payload, and has the ability to detect, identify and track ground targets.

As of March 2020, Turkey has around 130 armed drones belonging to different versions of Bayraktar TB2, ANKA, and Karayel in service. These drones were critical in Turkey’s strikes against the Kurdish rebels and regime forces in Syria. Turkish drones were also credited to swing the momentum in the favour of UN recognised Libyan government against the onslaught by the renegade strongman; General Haftar led Libyan National Army in Libya

A report published by C4ISRNET, a publication that covers technology for defence and intelligence communities, said “Turkey’s decision to send a mass-coordinated UAV attack points to its availability of options It also stated that "Turkey joins the United States, United Kingdom, France, Israel, China and Iran as drone-armed nations."

As a logical extension to expanding drone programs Turkey has started looking for the opportunities in the competitive global market for military drones. It has so far exported the drones to Qatar, Ukraine, and Azerbaijan and is reportedly in talks with Pakistan, Indonesia, and Tunisia for the same.

The rapid advancement in the design, development, deployment, and export of killer drones has put spotlight on Turkey as a new player in a fiercely contested arena which is so far dominated by established heavyweight players.

Support us to bring the world closer

To keep our content accessible we don't charge anything from our readers and rely on donations to continue working. Your support is critical in keeping Global Views 360 independent and helps us to present a well-rounded world view on different international issues for you. Every contribution, however big or small, is valuable for us to keep on delivering in future as well.

Support Us

Share this article

Read More

February 4, 2021 4:59 PM

Xenobots: The first ever ‘living’ robots

Creating robots using artificial intelligence has become quite normal in this century. But a robot built with an amalgamation of artificial intelligence and biology is quite enthralling. Researchers from University of Vermont and Tufts University collaborated to conceive a living robot called ‘Xenobot’.

This astounding, millimeter-wide chunk of technology is considered to be ‘living’ as it is created by stem cells from the embryo of Xenopus laevis, an African frog species. These stem cells were selected in such a way that they grew out to be heart and skin cells.

Prior to this, computer scientists at the University of Vermont ran an evolutionary algorithm, which imitates natural selection, on their supercomputer, which yielded the most suitable structures of the robot. After selecting the best designs, biologists at the Tufts University moulded the skin and heart cells into the forms which closely resembled the outputs of the algorithm, through microsurgery.

The resulting biological bodies looked like tiny aliens. "They're neither a traditional robot nor a known species of animal. It's a new class of artifact: a living, programmable organism" said Joshua Bongard, a computer scientist and robotics expert at the University of Vermont, who was involved in the research. Detailed results are published in the Proceedings of the National Academy of Sciences (PNAS) research paper on January 13, 2020.

Newly created xenobots were found to swim in any liquid medium for at least 10 days (or more if put in a nutrient-rich environment) without being fed with any nourishment, since the cells have a reserve of embryonic energy.

Another incredible facet of this technology is that it can revamp any of its parts efficiently upon damage. While technological pieces made out of plastic and metal might cause a lot of pollution after they are disposed of, xenobots are completely biodegradable, causing no harm to the environment. "These xenobots are fully biodegradable, when they're done with their job after seven days, they're just dead skin cells" said Bongard.

One might wonder how these miniscule cell blotches are helpful to us. Well, Xenobots may be very small in size but they can achieve feats which almost no huge, metal-made robot can.

These living robots will be useful in certain fields like medicine wherein they could be utilized to clear plague from our arteries. They can also be modelled with pouches which enables them to carry certain substances. This property can be used for delivering drugs in specific parts of our bodies. Xenobots can also be a boon in the field of cancer biology as they can help reprogramming tumors into normal cells.

Additionally, these tiny biological bodies can be oceans’ best friends. With contaminants like radioactive chemicals, plastics and microplastics creating havoc in the marine world, an immediate need to clean up our water bodies arises. Many xenobots were observed to be moving in circles (an attribute of the beating heart cells), which resembled a ‘clean-up’ motion. Hence, these tiny robots can be a perfect tool to eradicate microplastics from the oceans as well as eliminating nuclear wastes.

Although this technology may be promising, certain ethical questions arise with every technological development, especially those involving biological manipulations. If programmed in a certain way, xenobots can also take over natural biological functions (maybe nerve cells to hamper brain function) and this can be used for nasty purposes.

Michael Levin who directs the Center for Regenerative and Developmental Biology at Tufts said, “That fear is not unreasonable. When we start to mess around with complex systems that we don't understand, we're going to get unintended consequences”. Levin and Bongard are extensively working towards understanding how complex systems work. "There's all of this innate creativity in life. We want to understand that more deeply—and how we can direct and push it toward new forms" said UVM's Josh Bongard.

Like any new disruptive technological innovation, the Xenobots also have the potential to prove boon or bane for the humankind. Let's hope it turns out more boon than bane.

Read More