Friday, January 8, 2021

Remembering Dr. Stephen Hawking: One of the greatest physicists of our times

This article is by

Share this article

Article Contributor(s)

Oem Trivedi

Article Title

Remembering Dr. Stephen Hawking: One of the greatest physicists of our times

Publisher

Global Views 360

Publication Date

January 8, 2021

URL

Graffiti art remembering Dr. Stephen Hawking

Graffiti art remembering Dr. Stephen Hawking | Source: duncan c via Flickr

The last 50 years have produced some of the most fascinating ideas from physics which have ever been known to us mere mortals. Whether it is the idea of string theory where the world is made of tiny strings smaller than whatever lengths we can possibly encounter or whether it is the astonishing revelations that we possibly do not understand 96% of what constitutes the Universe, all of these brilliant ideas have caught the attention of both professional physicists and the normal population alike. This has also shot loads of world class physicists to limelight, with the likes of Roger Penrose, Edward Witten, Juan Maldacena, Abhay Ashtekar and Erik Verlinde amongst a huge number of physicists who have achieved great public acclaim for their work on Gravitational theories while the likes of Alan Guth, Andrei Linde, Paul Steinhardt, Jim Peebles amongst others have become famous names for their groundbreaking work in Cosmology. But perhaps the best-known figure of theoretical physics in the last half century has been someone who, despite all kinds of odds stacked against him, has contributed deeply to both Gravitational Physics and Cosmology, and his name is Stephen Hawking!

The depth and the length of Hawking’s scientific discoveries can not possibly be described to their full glory in one single article and that speaks volumes of the kind of incredible physics he pursued throughout his life. But intriguingly enough, physics was not what a young Stephen was supposedly going to do in his life. Stephen was born into a family which placed a high value towards a good education, as his father, Frank, was a medical researcher while his mother, Isobel, (having read Philosophy at Oxford, where she met Hawking’s father) was a secretary at a medical institute. While Hawking was named “Einstein” in his school days, his father actually wanted him to also study medicine like him. However, the young Stephen was actually fond of mathematics and since Oxford - where he pursued his undergraduation - didn’t offer a Mathematics degree at the time, he decided to major in Physics instead. Slowly, he gained an incredible amount of interest towards Physics although he was a conventionally “lazy” student throughout his undergraduation. He would not study seriously as he found most of work really easy and interestingly enough, it was the boat club in his university which slowly propelled him towards putting efforts as a student.

When Hawking started his PhD in Cambridge, he was quite disappointed to have not been made a student of legendary astronomer Fred Hoyle, instead he was made a student of Dennis Sciama. This proved fortuitous however, as Sciama was incredibly knowledgeable about almost everything in Cosmology and eventually became a central figure in British Cosmology. It was through him that Hawking got to meet his life-long collaborator and recently awarded Nobel Prize Winner, Sir Roger Penrose.  The meeting with Penrose, who was then working on some bewildering properties of the Black Hole, proved to be a pivotal moment of Hawking’s career. Penrose had shown in a general way the existence of space-time singularities, which is a point inside the black hole where the known laws of Physics, like General Relativity, collapse. Hawking used Penrose’s theorem to show that if one completely rewinds the entire history of the universe, then one would reach exactly to the kind of point which Penrose had described for a black hole; a Space-Time or in this case the Big-Bang Singularity.

Dr. Stephen Hawking at official opening of the Weston Library, Oxford, England | Source: John Cairns via Wikimedia

This idea shows that the universe began from an infinitesimally small point of seemingly infinite density, and hence, Einstein’s seminal theory of General Relativity also fails to explain the properties of the Universe at the time of its creation. This work of Hawking came to be of an astounding magnitude, and this has propelled work on loads of theories both of the early universe and even towards considerations of modifying General Relativity itself! This excellent work got Stephen his doctorate degree at Cambridge, a fact made even more stupendously inspirational considering that he was diagnosed with the Motor Neuron Disease by this time which made him completely paralyzed. He was in a state of depression after being diagnosed with this disease with doctors claiming that he had not much time left to live. It was then through the support of his family and his girlfriend (who soon became his wife) that got him through a very dark realization and motivated him to again pursue physics to the best of his abilities.

After his great work on the Big Bang, Hawking shifted his attention quite literally towards Black Holes. He produced a number of incredible theorems regarding them with Sir Penrose, which are now known as “Penrose—Hawking singularity theorems”. He was also collaborating vigorously with James Bardeen and Brandon Carter at this time, and together they produced some excellent work which showed how Black Holes could lose energy. Around the same time Jacob Bekenstein (who was then a PhD Student at Princeton University) showed that there had to be the existence of some quantum mechanical effects which would lead to the Black Hole having a so-called “entropy” (which is the classical measure of the disorder of a physical system). On the basis of his work with Carter and Bardeen with considerations to Bekenstein’s ideas, Hawking then showed that Black Holes lose energy by radiating it away through a particular mechanism. Considering Einstein’s seminal idea of Mass-Energy equivalence through E=MC2, this incredible work of Hawking meant that Black Holes actually lose Mass by radiating it away in a process now fittingly known as “Hawking Radiation''. Hawking Radiation has become a central idea in studies of Black Holes, Quantum Gravity and the very early universe, and was the key idea which propelled the concept of “Primordial Black Holes”, which refers to the Black Holes which were created in the very early universe. Recently there has been a lot of work which points towards the realization that these primordial black holes may constitute a huge part, if not all, of the dark matter in the universe (which is a mysterious form of matter which forms approximately 23% of the universe). If it is indeed the case, then Hawking’s work will inadvertently be the propeller towards the understanding of dark matter.

Throughout the time in which Hawking did all the above-mentioned work, his research was up there with the finest (if not the finest itself!) on gravitational physics and cosmology in the world. In his later years, Hawking became fascinated with even more exotic ideas which ranged from understanding quantum gravity (the theory of gravity at the smallest scales) and the Multiverse (the idea of an infinite number of universes) to the prospect of Extraterrestrial life and Time Travel. He produced some really insightful work on Quantum Gravity, and his work on Hawking Radiation has fueled loads of work in quantum gravitational theories like String theory and Loop Quantum Gravity. He even hosted a party for time travelers and discussed in length about Aliens & the effects of AI on humans in his later life.

But let’s end this very brief note of his life with this anecdote. Somak Raychoudhary, the current director of IUCAA in India, reminisces how he once met Sir Penrose’s office during his PhD days in Oxford about the allowance to attend one of his classes. Penrose was discussing some work with another PhD student at that time and was startled when he heard Somak’s surname. He said “ Are you related to the Raychoudhary?”. Somak was startled by hearing this and asked who it was that Penrose referred to. Penrose then exclaimed that he was referring to Amal Kumar Raychaudhuri, the Indian astrophysicist who discovered a seminal equation known by his name as the “Raychaudhri Equation”. When Somak told that he had indeed taken classes from Professor Amal, Penrose was very happy and immediately granted him permission to attend his classes. At this, the quiet PhD Student sitting with Penrose said to Somak “ We (him and Penrose) are incredibly inspired by his work and wish to meet him once in person “. That PhD Student was none other than Stephen Hawking and goes to show, the incredibly high regard Raychaudhri’s work is held in, while the general Indian don’t know much about him.

Support us to bring the world closer

To keep our content accessible we don't charge anything from our readers and rely on donations to continue working. Your support is critical in keeping Global Views 360 independent and helps us to present a well-rounded world view on different international issues for you. Every contribution, however big or small, is valuable for us to keep on delivering in future as well.

Support Us

Share this article

Read More

February 4, 2021 5:22 PM

Automated Facial Recognition System of India and its Implications

On 28th of June 2019, the National Crime Records Bureau (NCRB) opened bids and invited Turnkey Solution providers to implement a centralized Automated Facial Recognition System, or AFRS, in India. As the name suggests, AFRS is a facial recognition system which was proposed by the Indian Ministry of Home Affairs, geared towards modernizing the police force and to identify and track criminals using Facial Recognition Technology, or FRT.

The aforementioned technology uses databases of photos collected from criminal records, CCTV cameras, newspapers and media, driver’s license and government identities to collect facial data of people. FRT then identifies the people and uses their biometrics to map facial features and geometry of the face. The software then creates a “facial signature” based on the information collected. A mathematical formula is associated with each facial signature and it is subsequently compared to a database of known faces.

This article explores the implications of implementing Automated Facial Recognition technology in India.

Facial recognition software has become widely popular in the past decade. Several countries have been trying to establish efficient Facial Recognition systems for tackling crime and assembling an efficient criminal tracking system. Although there are a few potential benefits of using the technology, those benefits seem to be insignificant when compared to the several concerns about privacy and safety of people that the technology poses.

Images of every person captured by CCTV cameras and other sources will be regarded as images of potential criminals and will be matched against the Crime and Criminal Tracking Networks and Systems database (CCTNS) by the FRT. This implies that all of us will be treated as potential criminals when we walk past a CCTV camera. As a consequence, the assumption of “innocent until proven guilty” will be turned on its head.

You wouldn’t be surprised to know that China has installed the largest centralized FRT system in the world. In China, data can be collected and analyzed from over 200 million CCTVs that the country owns. Additionally, there are 20 million specialized facial recognition cameras which continuously collect data for analysis. These systems are currently used by China to track and manipulate the behavior of ethnic Uyghur minorities in the camps set up in Xinjiang region. FRT was also used by China during democracy protests of Hong Kong to profile protestors to identify them. These steps raised concerns worldwide about putting an end to a person’s freedom of expression, right to privacy and basic dignity.

It is very likely that the same consequences will be faced by Indians if AFRS is established across the country.

There are several underlying concerns about implementing AFRS.

Firstly, this system has proven to be inefficient in several instances. In August 2018, Delhi police used a facial recognition system which was reported to have an accuracy rate of 2%. The FRT software used by the UK's Metropolitan Police returned more than a staggering 98% of false positives. Another instance was when American Civil Liberties Union (ACLU) used Amazon’s face recognition software known as “Rekognition” to compare the images of the legislative members of American Congress with a database of criminal mugshots. To Amazon’s embarrassment, the results included 28 incorrect matches.. Another significant evidence of inefficiency was the outcome of an experiment performed by McAfee.  Here is what they did. The researchers used an algorithm known as CycleGAN which is used for image translation. CycleGAN is a software expert at morphing photographs. One can use the software to change horses into zebras and paintings into photographs. McAfee used the software to misdirect the Facial recognition algorithm. The team used 1500 photos of two members and fed them into CycleGAN which morphed them into one another and kept feeding the resulting images into different facial recognition algorithms to check who it recognized. After generating hundreds of such images, CycleGAN eventually generated a fake image which looked like person ‘A’ to the naked eye but managed to trick the FRT into thinking that it was person ‘B’. Owing to the dissatisfactory results, researchers expressed their concern about the inefficiency of FRTs. In fact mere eye-makeup can fool the FRT into allowing a person on a no-flight list to board the flight. This trend of inefficiency in the technology was noticed worldwide.

Secondly, facial recognition systems use machine learning technology. It is concerning and uncomfortable to note that FRT has often reflected the biases deployed in the society. Consequently, leading to several facial mismatches. A study by MIT shows that FRT routinely misidentifies people of color, women and young people. While the error rate was 8.1% for men, it was 20.6% for women. The error for women of color was 34%. The error values in the “supervised study” in a laboratory setting for a sample population is itself simply unacceptable. In the abovementioned American Civil Liberties Union study, the false matches were disproportionately African American and people of color. In India, 55% of prisoners undertrial are either Dalits, Adivasis, or Muslims although the combined population of all three just amounts to 39% of the total population (2011 census). If AFRS is trained on these records, it would definitely deploy the same socially held prejudices against the minority communities. Therefore, displaying inaccurate matches. The tender issued by the Ministry of Home Affairs had no indication of eliminating these biases nor did it have any mention of human-verifiable results. Using a system embedded with societal bias to replace biased human judgement defeats claims of technological neutrality. Deploying FRT systems in law enforcement will be ineffective at best and disastrous at worst.

Thirdly, the concerns of invasion of privacy and mass surveillance hasn’t been addressed satisfactorily. Facial Recognition makes data protection almost impossible as publicly available information is collected but they are analyzed to a point of intimacy. India does not have a well established data protection law given that “Personal data Protection Bill” is yet to be enforced. Implementing AFRS in the absence of a safeguard is a potential threat to our personal data. Moreover, police and other law enforcement agencies will have a great degree of discretion over our data which can lead to a mission creep. To add on to the list of privacy concerns, the bidder of AFRS will be largely responsible for maintaining confidentiality and integrity of data which will be stored apart from the established ISO standard. Additionally, the tender has no preference to “Make in India'' and shows absolutely no objections to foreign bidders and even to those having their headquarters in China, the hub of data breach .The is no governing system or legal limitations and restrictions to the technology. There is no legal standard set to ensure proportional use and protection to those who non-consensually interact with the system. Furthermore, the tender does not mention the definition of a “criminal”. Is a person considered a criminal when a charge sheet is filed against them? Or is it when the person is arrested? Or is it an individual convicted by the Court? Or is it any person who is a suspect? Since the word “criminal” isn’t definitely defined in the tender, the law enforcement agencies will ultimately be able to track a larger number of people than required.

The notion that AFRS will lead to greater efficacy must be critically questioned. San Francisco imposed a total ban on police use of facial recognition in May, 2019. Police departments in London are pressurized to put a stop to the use of FRT after several instances of discrimination and inefficiency. It would do well to India to learn from the mistakes of other countries rather than committing the same.

Read More