Thursday, July 23, 2020

Randomised Control Trials and the Alleviation of Poverty in India

This article is by

Share this article

Article Contributor(s)

Sattva Vasavada

Article Title

Randomised Control Trials and the Alleviation of Poverty in India

Publisher

Global Views 360

Publication Date

July 23, 2020

URL

Poverty in India — A Representative Image

Poverty in India — A Representative Image | Source: Atul Kumar via Unsplash

Abhijit Banerjee and Esther Duflo won the 2019 Nobel Prize in Economics for their “experimental approach in alleviating global poverty”. Their experimental approach encompassed a variety of novel methods to understand and analyse interventions and Randomised Control Trials (RCTs). Their research has been used by policy makers to make informed policy decisions to best help the marginalised.

What are RCTs?

To understand the effect of a policy, intervention, or medicine, decision makers try to measure the efficacy of the treatment. Do deworming pills given to children improve test scores? Does providing chlorinated water improve the health and economic outcomes of villages? These are some causal (read causal, i.e. caused by, not casual) questions researchers are interested in. The best way to analyse causal effects is to randomise the selection of people in the treatment and the control group (for example: children who are given deworming pills versus children who are not given the pills). This random selection of the two groups removes many statistical biases that might affect the results.

RCTs in India:

Many of the RCTs performed by Banerjee and Duflo were in India. They involved short- and long-term impact assessments of various interventions, policies, models, and treatments. We look at a few RCTs implemented in India:

Teacher absenteeism rates:

Troubled by the low attendance rates (or high absence rates) of public-school teachers in India, Duflo assessed the impact of financial incentives on the absence rates of teachers in Rajasthan. The study monitored teacher attendance by cameras, which was tied to a financial incentive if the attendance was high. From a baseline absence rate of 44%, teacher absenteeism in the treatment group fell by 21%, relative to the control group. High teacher attendance caused child test scores to improve too.

COVID-19 and health-seeking behaviour:

In the context of COVID-19, Banerjee tested the effect of sending messages via SMS that promoted health preserving behaviour. The results were very positive. By sending a short, 2.5-minute clip to 25 million randomly selected individuals in West Bengal, the intervention i) found a two-fold increase in symptom reporting to village health workers, ii) increased hand washing rates by 7%, and iii) increased mask-wearing by 2%. While mask-wearing rates increased only marginally, the spillover effects (wearing a mask stops the virus from infecting more people) were moderately high and positive.

Asset Transfers and the Notion of Poverty:

An RCT by Banerjee in West Bengal involving a productive asset transfer accompanied with training found large and persistent effects on monthly consumption and other variables. The treatment group reported 25% higher consumption levels relative to the control group, who did not receive the asset transfer and training. Implications of such RCTs are huge. The notion that the poor are lazy and unwilling to perform strenuous labour is falsified by this RCT. Often, what the poor lack are opportunities that are hard to come by, given their financial status. A small nudge, like the asset transfer, can cause large and positive effects on their well-being.  

Salt fortification to reduce anaemia:

RCTs also help rule out less cost-effective interventions. Duflo and Banerjee evaluated an RCT which distributed fortified salt in 400 villages of Bihar, to reduce the prevalence of anaemia. However, this intervention found no statistically significant impact on health outcomes like anaemia, hemoglobin, etc.  Thus, while RCTs help introduce novel methods of impacting the lives of the poor, they also help in ruling out in-effective measures. A policy maker might try other alternatives to reduce the prevalence of anaemia.

Are RCTs the gold standard?

Maybe. Extrapolating results from a regional RCT to national policies could present problems. Contextuality matters. A study that indicates positive gains for one region might present different, and rather adverse effects for another region. Nation wide effects might not be as prominent as regional results of a single RCT. The good part is that Banerjee and Duflo have a solution. Just perform more RCTs!

Support us to bring the world closer

To keep our content accessible we don't charge anything from our readers and rely on donations to continue working. Your support is critical in keeping Global Views 360 independent and helps us to present a well-rounded world view on different international issues for you. Every contribution, however big or small, is valuable for us to keep on delivering in future as well.

Support Us

Share this article

Read More

July 19, 2021 11:59 AM

3D Printing: The direction to go for the Indian Defense and Aerospace Industries

3D printing is the next big game-changer on the technological front, almost a revolution if you will. 3D printing, also known as additive manufacturing, is a process of creating three-dimensional objects by layering two-dimensional cross sections on top of one another. The two-dimensional cross sections are computer-designed and rendered, which makes it all the more advanced. From Aerospace to Defense and Medical to Automotive, products manufactured via 3D printing are spreading their reach in the markets quite swiftly. This article will take a look at how 3D printing is beneficial and how the technology can transform the Indian and Defense and Aerospace sectors once utilized to its full potential.

Additive manufacturing has the power to unlock a wide range of opportunities. It uses a 3D printer to create a layer-by-layer “addition” of material which is digitally constructed. Different types of materials which are currently being used for the same are metals, ceramics, special plastics, synthetic resins, and etc. 3D printing not only reduces the cost of production of various components but also gives the power to manufacture locally with design flexibility. The technology significantly speeds the process of designing; this is mainly because there is no requirement of tools. Traditional manufacturing usually takes months to either acquire necessary tools and further produce parts and components or import components from various places. However, once 3D printers are acquired, which they might be costly in themselves, they would ensure a smoother production process. Hence, due to the combination of localized manufacturing and no tools, tailor-made designs can be produced to match the necessities of various industries.  

https://upload.wikimedia.org/wikipedia/commons/thumb/7/75/MakerBot_ThingOMatic_Bre_Pettis.jpg/220px-MakerBot_ThingOMatic_Bre_Pettis.jpg
Figure 2: A typical 3D printer. Source: Bre Pettis via Flickr

India is gradually growing with respect to its utilization of 3D printing technology. In 2014, the 3D printers market was at an early stage with just 200-500 combined workforce of engineers, designers and sales representatives. Currently, start-ups are springing up in places like Bangalore, Chennai, Mumbai, Visakhapatnam, etc and they are producing essential parts for sectors like the Indian Navy, Air Force, ISRO and the HAL.  India’s 3D printing market is projected to reach $79 million by the end of 2021, while the global market is at around $15.8 billion, which suggests that India has a lot of catching up to do.

Applications in the Aerospace and Defense Industry

The Aerospace and Defense Industries are keen to pursue additive manufacturing, mainly because of benefits such as weight reduction, cost cutting and to meet their highly specific requirements. The additive process uses less material to manufacture components and also ensures minimal waste of material. Overall reduced weightage means that less fuel would be used in aircrafts and hence result in better environmental compatibility. Let’s examine a few instances in India where 3D printing startups have assisted and provided the defense and aerospace sectors with unique solutions.

Recently, in 2020, the Centre-run defense company Hindustan Aeronautics Limited (HAL) had signed a MoU (Memorandum of Understanding) with Wipro 3D, the metal additive manufacturing branch of Wipro Infrastructure Engineering. The initiative would primarily focus on the design, development, testing, manufacturing, and repairing of aerospace components using metal additive technology. HAL is using 3D printing to manufacture engine components, although it also provides support to helicopter and rotary wing products. HAL also provides products to the Indian Army, Air Force, Navy, and Coast Guard. Speaking about this collaboration, Shekhar Shrivastava, CEO of the Bangalore division of HAL, said, “This initiative between HAL and Wipro 3D will create a unique synergy of capabilities that can accelerate the adoption of metal additive manufacturing in aerospace in India. Qualification of parts for aerospace is challenging as it would require prove out and extensive testing followed by certification by regulatory authorities which may also include flight testing."

Down south, Karnataka, which produces more than 65 percent of India’s aerospace-related components and exports, has taken a number of initiatives to promote additive manufacturing by setting up 3D printing clusters and sponsoring 3D printing startups. For example, through its flagship programme ‘Start Up Karnataka’, the State has given grants to ‘Deltasys E-Forming’, a Belgaum based start-up, to develop hybrid composite 3D printers. These initiatives are quite appropriate since two-thirds of India’s aircraft and helicopter manufacturing for the defense takes place in Karnataka, and 3D printing would revolutionize these processes quite rapidly.

On the other coast, Chennai-based 3D printing startup, Fabheads Automation, was established in 2015 by an ISRO engineer turned entrepreneur Dhinesh Kanagaraj. The deep tech startup designs and develops high-end carbon fibre helicopter blades for the Indian Air Force. Traditionally, carbon fibre parts are fabricated by laborious manual processes with a lot of fabrication time and money spent. Dhinesh also observed a lot of material wastage when he worked on carbon fibres at ISRO.  Based on this, Fabheads has designed an automated 3D printer series to eliminate material waste and also improve efficiency of production of carbon fibre. Sectors like the DRDO are currently approaching the company given these innovative methods of production.

3D Printing Saves the Day for the Indian Navy

Further, the Indian Navy has partnered with ‘think3D’, a Hyderabad-based 3D printing start-up, to produce spare components via additive manufacturing for both on and off-shore set-ups. The Indian Navy uses a lot of machinery on its ships which are imported from other countries and are quite old.  Whenever a component gets damaged, it is hard to replace it either because there is no availability of the part or because there is significant delay before a part is received. This often proved to be costly for the Navy since the machines would have to be kept idle before a spare part was replaced along with the fact that procurement of the parts was no less expensive.

This is where think3D had stepped in and supplied 3D printed parts to the Indian Navy, which were successfully tested and incorporated into its machinery. An example of such a 3D printed part, which proved to be of crucial help, is that of a centrifugal pump impeller- a key component for a ship’s operation.

https://3dprintingindustry.com/wp-content/uploads/2020/04/4.jpg
Figure 3: An original impeller (left) vs. a 3D printed impeller (right). Image source: think3D

The impeller is a rotating component and it is very important for a ship as it transfers energy from the motor to a fluid that needs to be pumped by accelerating the fluid outwards from the centre of rotation.  On ships, this component is used to import seawater into various parts of the ship for regular use of the crew. These impellers are required to rotate at high speeds for long durations and need to be very carefully designed. 3D printing was the best solution to replace these parts, given the speed of production and lower expenses.

Given all the benefits of 3D printing, it is high time for the Indian market to expand its 3D printing industry and utilize it to its full potential. There are many other instances like the one of the impeller in the Aerospace and Defense industries which can easily be solved using 3D printing.

Read More