Friday, July 10, 2020

Plant- Microbial fuel cell: Generating electricity from green, living plants

This article is by

Share this article

Article Contributor(s)

Charvi Trivedi

Article Title

Plant- Microbial fuel cell: Generating electricity from green, living plants

Publisher

Global Views 360

Publication Date

July 10, 2020

URL

Marshland near Blythburgh. View over the tidal River Blyth

Marshland near Blythburgh. View over the tidal River Blyth  | Source:  Eileen Henderson via Wikimedia

Humans are capable of discovering and creating great things with the help of science and one such impressive discovery is that green, living plants can generate electricity. It may seem unbelievable, but not impossible.

One must be wondering how this technology works. Well, the answer is quite simple; photosynthesis. Plants excrete organic matter into the soil as a result of photosynthesis. Only some of the organic matter is used by plants and the rest is released in the soil. This released organic matter is broken down by bacteria. In the breakdown process, electrons are released as a waste product. Since the movement of electrons produces electricity, these electrons, which are of no use to the plant, can be harvested. The best part about this innovation is that the plants from which energy is being generated are not affected in any way.

This idea was first put into use by a Dutch start-up called Plant-e. This company was launched in September 2009 and is successful in launching and selling many environment- friendly products like DIY kits to the public for experimentation purposes and modular systems which could be easily installed on green roofs for abundant electricity production. Plant-e is involved in various projects, within The Netherlands, like automatic lighting systems in gardens and many more.

This technology works with the plants which thrive in moist soils and where the water is present in abundance. Therefore marshlands, paddy fields and deltas are some of the most suitable places for setting up plant batteries as a huge amount of water is present in those areas. Hence, the use of this technology is limited to certain geographic areas containing moist soils and cannot be used in arid regions. It may, however, promote the growth of more trees and plants which will gradually reverse the malicious effects of global warming.

Another obstacle in widespread adoption of this technology in today’s time is the high cost of installation of the system. The initial adopters of this technology are those who are attracted by the efficiency and eco-friendly nature of the plant batteries and willing to pay a premium for it.

The concept of plant batteries can be further taken into rural areas where most of the population still does not have access to adequate electricity. It is estimated that plant-MFC technology can cover upto 20% of European Union’s primary future electricity needs. Also, plants are almost 100% efficient at converting photons from sunlight into electrons which indicates a bright future for this technology. However, more research needs to be done in this field.

Another innovation in the field of green electricity is using algae , which often grows in ponds and rivers, for generating electricity. The basic concept which explains the working is similar to the way plants are able to produce electricity; photosynthesis.

Various other ventures in the field of renewable energy also include vegetable batteries, meaning, electric power generated from fruits and vegetables like lemons, tomatoes and potatoes, have been investigated. According to experiments, at least 3 to 4 vegetables are required just to light a small LED bulb. Moreover, it leads to poisoning of the vegetables and those food products need to be thrown away, without being useful for consumption purposes. It is therefore not a viable option for energy production.

Plant based electricity generation is still an evolving technology which has immense potential for producing energy in an environmentally sustainable way. It will realise full potential when the installation cost is attractive enough for the farmers to prefer it over the electricity grids or fossil fuel based personal electricity generator sets.

Support us to bring the world closer

To keep our content accessible we don't charge anything from our readers and rely on donations to continue working. Your support is critical in keeping Global Views 360 independent and helps us to present a well-rounded world view on different international issues for you. Every contribution, however big or small, is valuable for us to keep on delivering in future as well.

Support Us

Share this article

Read More

February 4, 2021 4:49 PM

Discovery of a new particle: A Charming Tetraquark

While the world is horrified by the novel Coronavirus, scientists at the European Centre for Nuclear Research (CERN) announced the discovery of a never seen before tetraquark. Any finding in particle physics is a phenomenal one because it could tell us a lot about the origins of the universe and how everything came to be. And this discovery is quite charming and quarky (quirky).

Quarks are the elementary particles so any further division of these particles is not possible. This means everything in the universe is ultimately a combination of Quarks. Any new discovery of Quarks  therefore increase our understanding about the origin of universe

When three Quarks come together, they form familiar particles known as Baryons, for instance, protons and neutrons, found in the nucleus of an atom. A tetraquark, in particle physics, is an exotic meson composed of four quarks.

Murray Gell-Mann, recipient of the 1969 Nobel Prize in Physics for his work on the theory of Elementary particles, chose the name ‘Quark’. Another scientist,  George Zweig from CERN also proposed the Quark theory independently of Gell-Mann.

All the new particles are detected using particle accelerators where particles are accelerated at almost the speed of light and collide to look into their subsets. It is like knocking two rocks together so that they break into smaller constituents.

The most recent tetraquark, named X (6900) was discovered by CERN physicists while working on LHCb (Large Hadron Collider beauty experiment). The already known tetraquarks contain a particular combination of two relatively heavy quarks and two light Quarks. On the other hand X(6900) consists of four heavy Quarks: two Quarks and two anti-Quarks.

This exclusive particle made of unusual combinations is a perfect setting for understanding the fundamental force of nature known as Strong Interaction. The strong force is vital to comprehend as it binds together protons, neutrons and the nucleus that ultimately make up matter. Another perk of X(6900)  is its relatively heavy mass, so these are simpler to look at and are more stable as compared to notoriously fast moving-lighter ones.

The paper written by 800 scientists is yet to be peer-reviewed. The bump observed has a statistical significance of more than five sigma (standard deviations) that is good enough to claim the discovery of a new particle.

In any scenario, this unusual discovery will serve as a piece for completing the puzzle of our universe while serving as evidence of the presence of new particles not yet found.

Read More