Friday, July 10, 2020

Plant- Microbial fuel cell: Generating electricity from green, living plants

This article is by

Share this article

Article Contributor(s)

Charvi Trivedi

Article Title

Plant- Microbial fuel cell: Generating electricity from green, living plants

Publisher

Global Views 360

Publication Date

July 10, 2020

URL

Marshland near Blythburgh. View over the tidal River Blyth

Marshland near Blythburgh. View over the tidal River Blyth  | Source:  Eileen Henderson via Wikimedia

Humans are capable of discovering and creating great things with the help of science and one such impressive discovery is that green, living plants can generate electricity. It may seem unbelievable, but not impossible.

One must be wondering how this technology works. Well, the answer is quite simple; photosynthesis. Plants excrete organic matter into the soil as a result of photosynthesis. Only some of the organic matter is used by plants and the rest is released in the soil. This released organic matter is broken down by bacteria. In the breakdown process, electrons are released as a waste product. Since the movement of electrons produces electricity, these electrons, which are of no use to the plant, can be harvested. The best part about this innovation is that the plants from which energy is being generated are not affected in any way.

This idea was first put into use by a Dutch start-up called Plant-e. This company was launched in September 2009 and is successful in launching and selling many environment- friendly products like DIY kits to the public for experimentation purposes and modular systems which could be easily installed on green roofs for abundant electricity production. Plant-e is involved in various projects, within The Netherlands, like automatic lighting systems in gardens and many more.

This technology works with the plants which thrive in moist soils and where the water is present in abundance. Therefore marshlands, paddy fields and deltas are some of the most suitable places for setting up plant batteries as a huge amount of water is present in those areas. Hence, the use of this technology is limited to certain geographic areas containing moist soils and cannot be used in arid regions. It may, however, promote the growth of more trees and plants which will gradually reverse the malicious effects of global warming.

Another obstacle in widespread adoption of this technology in today’s time is the high cost of installation of the system. The initial adopters of this technology are those who are attracted by the efficiency and eco-friendly nature of the plant batteries and willing to pay a premium for it.

The concept of plant batteries can be further taken into rural areas where most of the population still does not have access to adequate electricity. It is estimated that plant-MFC technology can cover upto 20% of European Union’s primary future electricity needs. Also, plants are almost 100% efficient at converting photons from sunlight into electrons which indicates a bright future for this technology. However, more research needs to be done in this field.

Another innovation in the field of green electricity is using algae , which often grows in ponds and rivers, for generating electricity. The basic concept which explains the working is similar to the way plants are able to produce electricity; photosynthesis.

Various other ventures in the field of renewable energy also include vegetable batteries, meaning, electric power generated from fruits and vegetables like lemons, tomatoes and potatoes, have been investigated. According to experiments, at least 3 to 4 vegetables are required just to light a small LED bulb. Moreover, it leads to poisoning of the vegetables and those food products need to be thrown away, without being useful for consumption purposes. It is therefore not a viable option for energy production.

Plant based electricity generation is still an evolving technology which has immense potential for producing energy in an environmentally sustainable way. It will realise full potential when the installation cost is attractive enough for the farmers to prefer it over the electricity grids or fossil fuel based personal electricity generator sets.

Support us to bring the world closer

To keep our content accessible we don't charge anything from our readers and rely on donations to continue working. Your support is critical in keeping Global Views 360 independent and helps us to present a well-rounded world view on different international issues for you. Every contribution, however big or small, is valuable for us to keep on delivering in future as well.

Support Us

Share this article

Read More

February 4, 2021 4:43 PM

Sweden’s No Lockdown Policy: How That Changed The Outcome

Sweden has gone against conventional wisdom in its response to the COVID-19 situation. While the neighbouring countries like Denmark, Finland and Norway imposed strict lockdown on the places and services frequented by the public, Sweden has chosen to not do so at all during the initial phases when COVID-19 started taking the shape of a worldwide pandemic. The public places like Cafes, restaurants, gyms, malls, playgrounds, ski slopes and some of the schools were kept open all across Sweden.

The country’s fight against the threat of pandemic was handled exclusively by the Public Health Authority, with no political interference. They believed that a lockdown only serves to delay the virus, which is not necessary since the health services are equipped to deal with the cases. They also made it clear that achieving herd immunity is also not their aim. The public authorities in Sweden instead relied on the public's sense of responsibility, and appealed to them to do frequent hand washing, observe social distancing and keep people over 70 years old from going out.

The state epidemiologist, Anders Tegnell, made multiple statements about the state’s unusual approach, such as 1) “Once you get into a lockdown, it’s difficult to get out of it,”, “How do you reopen?  When?” 2) “There is no evidence whatsoever that doing more at this stage would make

any difference. It’s far better to introduce stringent measures at very specific intervals, and keep them running for as little time as possible” , 3) " As long as the healthcare system reasonably can cope with and give good care to the ones that need care, it's not clear that having the cases later in time is better”.

The assumption of public responsibility did not work for Sweden and there were people out on the streets, in cafes, restaurants and playgrounds. Not wearing a mask was the social norm instead of the reverse. The models for charting the virus spread given by the concerned authorities also turned out to be faulty forcing them to rescind it. Over 2000 Swedish researchers and doctors signed a petition which claimed that there was not enough testing,tracking or isolation in the country. They believed that the authority has clearly not planned their response and that the authority’s claim for herd immunity has very little scientific basis, even though the government has repeatedly claimed that herd immunity is not what they were aiming for.

Sweden’s lax approach to the combating of coronavirus forced its neighbouring Scandinavian countries to close the border for the Swedish citizens. Some of the Swedish officials were worried for the possible harm to the long term relations between Sweden and its neighbours.  Also, the plan of letting life go on as usual to avoid the economic recession occurring due to a lockdown also failed as it didn’t shield  the country from economic slowdown.

Here comes the question; was the lockdown successful or not? There are some comparisons that have been drawn which indicate more deaths per 100,000 people than in nearby countries with homogenous population, even though it is significantly lesser than some of the European countries. While the infections rates are double that of Denmark, the death rates in comparison are much higher. This difference has been attributed to the fact that approximately half of these deaths have occurred in old care homes despite the stated priority of the officials to protect the elderly. This has been in part to the volunteer program, which replaced symptomatic old age home cares with new volunteers, hence increasing exposure. Another factor is the lack of protective equipment in such homes, along with laws preventing administration of medical procedures without the presence of doctors. There were reports of people threatened with lawsuits for banning visitors.

All of this led to Mr.Tegnell claiming that the ideal policy would have been something between what Sweden adopted and what the other countries did, in the light of what they know now. However this claim of Mr.Tegnell will be put to test when the second wave comes, later in time.

Read More