Saturday, July 25, 2020

Physics and Technological Revolutions

This article is by

Share this article

Article Contributor(s)

Oem Trivedi

Article Title

Physics and Technological Revolutions

Publisher

Global Views 360

Publication Date

July 25, 2020

URL

IBM Quantum Computer, an innovation based on Quantum Physics

IBM Quantum Computer, an innovation based on Quantum Physics | Source: IBM Research via Flickr

As he witnessed the first detonation of a nuclear weapon on July 16, 1945, a piece of ancient Scripture “Bhagwad Geeta” ran through the mind of Robert Oppenheimer: “Now I am become Death, the destroyer of worlds”. Oppenheimer, alongside the likes of Richard Feynman, Enrico Fermi, George Gamow, was part of the star-studded Physicist squad behind the Manhattan Project.

The biggest implications drawn from the end of WW2 for many might have just been the incoming power Struggle between the US and Soviet Union, but for your average American it went to a great length to show that Physicists form a breed of people who can build dangerously effective technology.

That fact, however, would have been evident to anyone with a brisk walk through Human History itself. Physicists have arguably provided the most significant contributions to the Technological Development of our race. From Archimedes building light reflectors to save the Greek Army from Roman Infiltration to the large-scale Ballistic Missile systems made during WW-II, weaponry technology has been highly influenced by physicists in every generation.

But mere list of armaments cannot do justice to the role played by Physics Research in Technological Developments of our society. To get a feel for that, let’s go back to the fathers of Modern Physics as we know it; Sir Isaac Newton and Galileo Galilei. Galileo had his long list of achievements in creating cutting edge technology of the day, ranging from Telescopes to Thermometers & the Magnetic Compass. Sir Isaac for his part was the reason behind the advent of the Industrial Revolution in Great Britain!

The simple Atwood Machines which have today become mainstay material taught to College Freshman and High School Seniors worldwide, were actually the kind of mechanical models on which the large-scale Factory Machines were built. Newton’s laws kickstarted the modern Technological Revolution and ever since then, Physics has been a constant source of inspiration behind all Technology.

The great pioneers in the field “Natural Philosophy” (the physics of today) after Newton continued the trend which their illustrious predecessor had started. The seminal works on Thermodynamics by the likes of Lord Kelvin, Ludwig Boltzmann, James Clerk Maxwell etc. played the decisive part in creating automobile engines and really any technology which dealt with heat (Spoiler Alert- There were a lot of them!). Maxwell’s work on the famous equations on Electromagnetism now named after him played the most significant part in the mission of making Electricity available to everyone (a conquest now just famously remembered for the fight between Nikola Tesla and Thomas Edison).

While one can point out that Theoretical works cannot lead to new Technology on their own, that assertion is only the half-truth. Sure, building technology on the basis of theoretical physics is mostly down to the Engineers, but one cannot underestimate the effect new theoretical developments and their possible uses have on the construction of new technologies. After all, if one was not able to understand the principles of the conversion of mass to energy or Electric & Magnetic Fields are coupled to each other, then expecting the construction of Nuclear Reactors and virtually all Electric Tech today would have been off the table.

So one might ask, what are the new theoretical ideas which can guide the next leap forward technologically? Well, no one can be quite sure of the form which technology will take in even a couple of decades (who would have thought that Server systems designed for efficiently using giant Data in CERN would one day be heavily used for making memes!).

I would go as far as to say that we have not yet completely exhausted the technological possibilities of the Special Theory of Relativity itself, the most prominent example of game changing technology based on that has been GPS Communication systems. One can hence fail to even imagine the kind of technological (and Industrial) progress technologies built on the revealing concepts from General Relativity and Quantum Mechanics can bestow upon us (I’m even refraining to comment on the Quantum Field Theoretic parts!).

Whatever that physics will lead us to is a mystery time will be most suited to answer, but one can see the effects of Quantum Mechanics in the next Computational Revolution itself; Quantum Computing. To put into perspective the extent of development Quantum Computing can bestow upon us, consider the following.

Computational devices today, which are stronger than the computers which put humans to the moon, are fundamentally built upon binary bit systems. From generating Big Bang like Energies in CERN and reaching past Saturn, to making all the knowledge available to everyone has been done in two bits. While Quantum Computers, which are being vividly researched on, can work with virtually infinite bits ! So, hold on tight as exciting new physics promises some large-scale changes on our Civilization as a whole.

Support us to bring the world closer

To keep our content accessible we don't charge anything from our readers and rely on donations to continue working. Your support is critical in keeping Global Views 360 independent and helps us to present a well-rounded world view on different international issues for you. Every contribution, however big or small, is valuable for us to keep on delivering in future as well.

Support Us

Share this article

Read More

February 4, 2021 4:59 PM

Xenobots: The first ever ‘living’ robots

Creating robots using artificial intelligence has become quite normal in this century. But a robot built with an amalgamation of artificial intelligence and biology is quite enthralling. Researchers from University of Vermont and Tufts University collaborated to conceive a living robot called ‘Xenobot’.

This astounding, millimeter-wide chunk of technology is considered to be ‘living’ as it is created by stem cells from the embryo of Xenopus laevis, an African frog species. These stem cells were selected in such a way that they grew out to be heart and skin cells.

Prior to this, computer scientists at the University of Vermont ran an evolutionary algorithm, which imitates natural selection, on their supercomputer, which yielded the most suitable structures of the robot. After selecting the best designs, biologists at the Tufts University moulded the skin and heart cells into the forms which closely resembled the outputs of the algorithm, through microsurgery.

The resulting biological bodies looked like tiny aliens. "They're neither a traditional robot nor a known species of animal. It's a new class of artifact: a living, programmable organism" said Joshua Bongard, a computer scientist and robotics expert at the University of Vermont, who was involved in the research. Detailed results are published in the Proceedings of the National Academy of Sciences (PNAS) research paper on January 13, 2020.

Newly created xenobots were found to swim in any liquid medium for at least 10 days (or more if put in a nutrient-rich environment) without being fed with any nourishment, since the cells have a reserve of embryonic energy.

Another incredible facet of this technology is that it can revamp any of its parts efficiently upon damage. While technological pieces made out of plastic and metal might cause a lot of pollution after they are disposed of, xenobots are completely biodegradable, causing no harm to the environment. "These xenobots are fully biodegradable, when they're done with their job after seven days, they're just dead skin cells" said Bongard.

One might wonder how these miniscule cell blotches are helpful to us. Well, Xenobots may be very small in size but they can achieve feats which almost no huge, metal-made robot can.

These living robots will be useful in certain fields like medicine wherein they could be utilized to clear plague from our arteries. They can also be modelled with pouches which enables them to carry certain substances. This property can be used for delivering drugs in specific parts of our bodies. Xenobots can also be a boon in the field of cancer biology as they can help reprogramming tumors into normal cells.

Additionally, these tiny biological bodies can be oceans’ best friends. With contaminants like radioactive chemicals, plastics and microplastics creating havoc in the marine world, an immediate need to clean up our water bodies arises. Many xenobots were observed to be moving in circles (an attribute of the beating heart cells), which resembled a ‘clean-up’ motion. Hence, these tiny robots can be a perfect tool to eradicate microplastics from the oceans as well as eliminating nuclear wastes.

Although this technology may be promising, certain ethical questions arise with every technological development, especially those involving biological manipulations. If programmed in a certain way, xenobots can also take over natural biological functions (maybe nerve cells to hamper brain function) and this can be used for nasty purposes.

Michael Levin who directs the Center for Regenerative and Developmental Biology at Tufts said, “That fear is not unreasonable. When we start to mess around with complex systems that we don't understand, we're going to get unintended consequences”. Levin and Bongard are extensively working towards understanding how complex systems work. "There's all of this innate creativity in life. We want to understand that more deeply—and how we can direct and push it toward new forms" said UVM's Josh Bongard.

Like any new disruptive technological innovation, the Xenobots also have the potential to prove boon or bane for the humankind. Let's hope it turns out more boon than bane.

Read More