Saturday, July 25, 2020

Physics and Technological Revolutions

This article is by

Share this article

Article Contributor(s)

Oem Trivedi

Article Title

Physics and Technological Revolutions

Publisher

Global Views 360

Publication Date

July 25, 2020

URL

IBM Quantum Computer, an innovation based on Quantum Physics

IBM Quantum Computer, an innovation based on Quantum Physics | Source: IBM Research via Flickr

As he witnessed the first detonation of a nuclear weapon on July 16, 1945, a piece of ancient Scripture “Bhagwad Geeta” ran through the mind of Robert Oppenheimer: “Now I am become Death, the destroyer of worlds”. Oppenheimer, alongside the likes of Richard Feynman, Enrico Fermi, George Gamow, was part of the star-studded Physicist squad behind the Manhattan Project.

The biggest implications drawn from the end of WW2 for many might have just been the incoming power Struggle between the US and Soviet Union, but for your average American it went to a great length to show that Physicists form a breed of people who can build dangerously effective technology.

That fact, however, would have been evident to anyone with a brisk walk through Human History itself. Physicists have arguably provided the most significant contributions to the Technological Development of our race. From Archimedes building light reflectors to save the Greek Army from Roman Infiltration to the large-scale Ballistic Missile systems made during WW-II, weaponry technology has been highly influenced by physicists in every generation.

But mere list of armaments cannot do justice to the role played by Physics Research in Technological Developments of our society. To get a feel for that, let’s go back to the fathers of Modern Physics as we know it; Sir Isaac Newton and Galileo Galilei. Galileo had his long list of achievements in creating cutting edge technology of the day, ranging from Telescopes to Thermometers & the Magnetic Compass. Sir Isaac for his part was the reason behind the advent of the Industrial Revolution in Great Britain!

The simple Atwood Machines which have today become mainstay material taught to College Freshman and High School Seniors worldwide, were actually the kind of mechanical models on which the large-scale Factory Machines were built. Newton’s laws kickstarted the modern Technological Revolution and ever since then, Physics has been a constant source of inspiration behind all Technology.

The great pioneers in the field “Natural Philosophy” (the physics of today) after Newton continued the trend which their illustrious predecessor had started. The seminal works on Thermodynamics by the likes of Lord Kelvin, Ludwig Boltzmann, James Clerk Maxwell etc. played the decisive part in creating automobile engines and really any technology which dealt with heat (Spoiler Alert- There were a lot of them!). Maxwell’s work on the famous equations on Electromagnetism now named after him played the most significant part in the mission of making Electricity available to everyone (a conquest now just famously remembered for the fight between Nikola Tesla and Thomas Edison).

While one can point out that Theoretical works cannot lead to new Technology on their own, that assertion is only the half-truth. Sure, building technology on the basis of theoretical physics is mostly down to the Engineers, but one cannot underestimate the effect new theoretical developments and their possible uses have on the construction of new technologies. After all, if one was not able to understand the principles of the conversion of mass to energy or Electric & Magnetic Fields are coupled to each other, then expecting the construction of Nuclear Reactors and virtually all Electric Tech today would have been off the table.

So one might ask, what are the new theoretical ideas which can guide the next leap forward technologically? Well, no one can be quite sure of the form which technology will take in even a couple of decades (who would have thought that Server systems designed for efficiently using giant Data in CERN would one day be heavily used for making memes!).

I would go as far as to say that we have not yet completely exhausted the technological possibilities of the Special Theory of Relativity itself, the most prominent example of game changing technology based on that has been GPS Communication systems. One can hence fail to even imagine the kind of technological (and Industrial) progress technologies built on the revealing concepts from General Relativity and Quantum Mechanics can bestow upon us (I’m even refraining to comment on the Quantum Field Theoretic parts!).

Whatever that physics will lead us to is a mystery time will be most suited to answer, but one can see the effects of Quantum Mechanics in the next Computational Revolution itself; Quantum Computing. To put into perspective the extent of development Quantum Computing can bestow upon us, consider the following.

Computational devices today, which are stronger than the computers which put humans to the moon, are fundamentally built upon binary bit systems. From generating Big Bang like Energies in CERN and reaching past Saturn, to making all the knowledge available to everyone has been done in two bits. While Quantum Computers, which are being vividly researched on, can work with virtually infinite bits ! So, hold on tight as exciting new physics promises some large-scale changes on our Civilization as a whole.

Support us to bring the world closer

To keep our content accessible we don't charge anything from our readers and rely on donations to continue working. Your support is critical in keeping Global Views 360 independent and helps us to present a well-rounded world view on different international issues for you. Every contribution, however big or small, is valuable for us to keep on delivering in future as well.

Support Us

Share this article

Read More

February 4, 2021 4:49 PM

Discovery of a new particle: A Charming Tetraquark

While the world is horrified by the novel Coronavirus, scientists at the European Centre for Nuclear Research (CERN) announced the discovery of a never seen before tetraquark. Any finding in particle physics is a phenomenal one because it could tell us a lot about the origins of the universe and how everything came to be. And this discovery is quite charming and quarky (quirky).

Quarks are the elementary particles so any further division of these particles is not possible. This means everything in the universe is ultimately a combination of Quarks. Any new discovery of Quarks  therefore increase our understanding about the origin of universe

When three Quarks come together, they form familiar particles known as Baryons, for instance, protons and neutrons, found in the nucleus of an atom. A tetraquark, in particle physics, is an exotic meson composed of four quarks.

Murray Gell-Mann, recipient of the 1969 Nobel Prize in Physics for his work on the theory of Elementary particles, chose the name ‘Quark’. Another scientist,  George Zweig from CERN also proposed the Quark theory independently of Gell-Mann.

All the new particles are detected using particle accelerators where particles are accelerated at almost the speed of light and collide to look into their subsets. It is like knocking two rocks together so that they break into smaller constituents.

The most recent tetraquark, named X (6900) was discovered by CERN physicists while working on LHCb (Large Hadron Collider beauty experiment). The already known tetraquarks contain a particular combination of two relatively heavy quarks and two light Quarks. On the other hand X(6900) consists of four heavy Quarks: two Quarks and two anti-Quarks.

This exclusive particle made of unusual combinations is a perfect setting for understanding the fundamental force of nature known as Strong Interaction. The strong force is vital to comprehend as it binds together protons, neutrons and the nucleus that ultimately make up matter. Another perk of X(6900)  is its relatively heavy mass, so these are simpler to look at and are more stable as compared to notoriously fast moving-lighter ones.

The paper written by 800 scientists is yet to be peer-reviewed. The bump observed has a statistical significance of more than five sigma (standard deviations) that is good enough to claim the discovery of a new particle.

In any scenario, this unusual discovery will serve as a piece for completing the puzzle of our universe while serving as evidence of the presence of new particles not yet found.

Read More