Saturday, July 25, 2020

Physics and Technological Revolutions

This article is by

Share this article

Article Contributor(s)

Oem Trivedi

Article Title

Physics and Technological Revolutions

Publisher

Global Views 360

Publication Date

July 25, 2020

URL

IBM Quantum Computer, an innovation based on Quantum Physics

IBM Quantum Computer, an innovation based on Quantum Physics | Source: IBM Research via Flickr

As he witnessed the first detonation of a nuclear weapon on July 16, 1945, a piece of ancient Scripture “Bhagwad Geeta” ran through the mind of Robert Oppenheimer: “Now I am become Death, the destroyer of worlds”. Oppenheimer, alongside the likes of Richard Feynman, Enrico Fermi, George Gamow, was part of the star-studded Physicist squad behind the Manhattan Project.

The biggest implications drawn from the end of WW2 for many might have just been the incoming power Struggle between the US and Soviet Union, but for your average American it went to a great length to show that Physicists form a breed of people who can build dangerously effective technology.

That fact, however, would have been evident to anyone with a brisk walk through Human History itself. Physicists have arguably provided the most significant contributions to the Technological Development of our race. From Archimedes building light reflectors to save the Greek Army from Roman Infiltration to the large-scale Ballistic Missile systems made during WW-II, weaponry technology has been highly influenced by physicists in every generation.

But mere list of armaments cannot do justice to the role played by Physics Research in Technological Developments of our society. To get a feel for that, let’s go back to the fathers of Modern Physics as we know it; Sir Isaac Newton and Galileo Galilei. Galileo had his long list of achievements in creating cutting edge technology of the day, ranging from Telescopes to Thermometers & the Magnetic Compass. Sir Isaac for his part was the reason behind the advent of the Industrial Revolution in Great Britain!

The simple Atwood Machines which have today become mainstay material taught to College Freshman and High School Seniors worldwide, were actually the kind of mechanical models on which the large-scale Factory Machines were built. Newton’s laws kickstarted the modern Technological Revolution and ever since then, Physics has been a constant source of inspiration behind all Technology.

The great pioneers in the field “Natural Philosophy” (the physics of today) after Newton continued the trend which their illustrious predecessor had started. The seminal works on Thermodynamics by the likes of Lord Kelvin, Ludwig Boltzmann, James Clerk Maxwell etc. played the decisive part in creating automobile engines and really any technology which dealt with heat (Spoiler Alert- There were a lot of them!). Maxwell’s work on the famous equations on Electromagnetism now named after him played the most significant part in the mission of making Electricity available to everyone (a conquest now just famously remembered for the fight between Nikola Tesla and Thomas Edison).

While one can point out that Theoretical works cannot lead to new Technology on their own, that assertion is only the half-truth. Sure, building technology on the basis of theoretical physics is mostly down to the Engineers, but one cannot underestimate the effect new theoretical developments and their possible uses have on the construction of new technologies. After all, if one was not able to understand the principles of the conversion of mass to energy or Electric & Magnetic Fields are coupled to each other, then expecting the construction of Nuclear Reactors and virtually all Electric Tech today would have been off the table.

So one might ask, what are the new theoretical ideas which can guide the next leap forward technologically? Well, no one can be quite sure of the form which technology will take in even a couple of decades (who would have thought that Server systems designed for efficiently using giant Data in CERN would one day be heavily used for making memes!).

I would go as far as to say that we have not yet completely exhausted the technological possibilities of the Special Theory of Relativity itself, the most prominent example of game changing technology based on that has been GPS Communication systems. One can hence fail to even imagine the kind of technological (and Industrial) progress technologies built on the revealing concepts from General Relativity and Quantum Mechanics can bestow upon us (I’m even refraining to comment on the Quantum Field Theoretic parts!).

Whatever that physics will lead us to is a mystery time will be most suited to answer, but one can see the effects of Quantum Mechanics in the next Computational Revolution itself; Quantum Computing. To put into perspective the extent of development Quantum Computing can bestow upon us, consider the following.

Computational devices today, which are stronger than the computers which put humans to the moon, are fundamentally built upon binary bit systems. From generating Big Bang like Energies in CERN and reaching past Saturn, to making all the knowledge available to everyone has been done in two bits. While Quantum Computers, which are being vividly researched on, can work with virtually infinite bits ! So, hold on tight as exciting new physics promises some large-scale changes on our Civilization as a whole.

Support us to bring the world closer

To keep our content accessible we don't charge anything from our readers and rely on donations to continue working. Your support is critical in keeping Global Views 360 independent and helps us to present a well-rounded world view on different international issues for you. Every contribution, however big or small, is valuable for us to keep on delivering in future as well.

Support Us

Share this article

Read More

February 4, 2021 4:46 PM

Electoral Processes in the US: Electing the President

The USA electoral process is a complex one; caucuses and primaries, followed by national conventions, general elections, formation of the electoral college and the selection of the president. Each step of this process has a lot of subtleties, which vary widely from state to state.

Caucuses and Primaries: This is the initial step of the selection of president. This stage of choosing occurs within a political party, where the party picks the candidate to rally behind.

In the state “Primary”', the registered members of political parties cast votes to allocate delegates for the presidential nominees of their parties. In some of the states this is done through caucuses, where groups are formed behind various potential candidates and there is discussion and persuasion between various groups. Republican party allocates all the delegates directly through primary or caucus, however the Democratic party allocates some Super-Delegates over and above the directly elected ones. These selected or allocated delegates are sent to the national party convention to represent their nominees.

In the process occurring between the primaries and caucuses to the selection of the potential electors is decided entirely by the party. The democrats, after the 1968 democratic convention, made a formal mechanism to reduce power of party leaders over the selection process and ways to represent minorities in the electors. This, however, backfired for the party as the delegates selected by primaries voted according to candidates and not the party, which led to the 1972 democratic Presidential candidate to win in only one state. The rules were then reformed and the concept of Super-Delegates was introduced. The Republican party also followed a somewhat similar trajectory, but did not impose as many restrictions on the delegate selection process, and never took measures to include the minorities.

National Conventions: Each parties’ delegates then choose a final presidential nominee at a national party convention. The nominee picks another person, who would be the vice president in the case the nominee wins. Here, there can be pledged or unpledged delegates; pledged ones are bound to support the potential candidates they chose in the previous round, while the unbound, or superdelegates can support anyone they choose.

Electoral College: After each of the parties have selected their presidential candidate, the candidate campaigns across the country to gain favor from the general public. There are speeches, rallies, debates, and other outreach activities, in which the candidates promote themselves. Meanwhile, the parties select some respective potential electors in each state, which are the people who get the last vote in the selection of the president. Each party forms a slate of potential electors according to the state..

General Election:After this, the general election occurs, in which the public votes for a president. However, the public does not directly vote for the president; they vote for the slate of electors for that political party for that state.

After the general election, the Electors are appointed to the state in two ways.. Electors from all the states then form the electoral college, which is the body that votes for the president. The electors are not legally bound to vote for the party they are pledged to, but can be fined or disqualified if they defect. Throughout USA history, though, more than 99% of the electors have voted as pledged.

The electoral college presently has 538 electors and the candidate who wins 270 or more electoral votes, wins the Presidential election.

Read More